Detailed/More Info:
This is a hidden text,
acting just like a spacer
type of text in order to
push the Entity info
down on the page. Sorry to have wasted your time/ear to listen to this, I was just trying to get a layout work like I wanted.
Last updated: 22 March, 2019 14:44
Counterbalanced Hoisting at Findley Mine; May 1909

Abstracted from a 2,5-page article about various mine operations in Colorado, only taking what is about the single operation in question + forewords.

Mines and Minerals, May 1909
(page 442)
Written for Mines and Minerals, by R. L. Herrick.
Examples of ingenious Devices Used in Colorado Mines and Which Result in Great Economy of Power.

The economic advantages of balanced hoisting are so well known that wherever we find a shaft or incline with two hoist compartments, we expect to find that method in vogue as a matter of course. If, however, there is but one hoist compartment, we are apt to accept unbalanced hoisting as a necessary, if comparatively expensive, method of operation.

Any mine operator who has tried both ways of hoisting can quickly tell us how much of a saving in power, and in dollars and cents, balanced hoisting has meant to him.

Perhaps he originally operated his mine through a small shaft with only one hoist compartment. If, on the development of the mine, the tonnage warranted it, he probably went to the expense of remodeling his shaft to accommodate another hoist compartment in order to thus admit of hoisting in balance. On the other hand, suppose with the increased age of the mine, not only the available tonnage decreased till not even the one compartment was kept busy in hoisting, but the decreasing value of the ore necessitated the strictest economy to admit of a profit margin.

Sinking another shaft compartment was untenable but was balanced hoisting impossible? In the following account of balanced operations at the Findley Mine, in the Cripple Creek district, Colo., perhaps some operator will find something worthy of imitation.

Perhaps no other mining region in the world offers so many examples of where native ingenuity has been applied to effect hoisting in balance or partial balance as in the state of Colorado. An attempt has been made in the following to collect some typical examples not generally known in outside districts and present the essential data for sake of comparison.

Counterweights at the Findley Mine.

The Findley is an old mine which in past days has been a good producer but in recent years has been given over to leasers. Its shaft is 1,470 feet deep, with two compartments, one a skipway about 4½ ft. X 4½ ft. in the clear, the other a ladderway 4½ ft. X 3 ft. in the clear.

Figure 1
Figure 1.

The elevation of the collar is 10,398 feet A. T., and the cost of coal laid down is an important item in cost of mine operation. Until some 2 years ago, the hoisting was unbalanced, but at that time the counterweight, illustrated in Fig. 1, was installed in the ladder compartment. As the limited space in this small compartment demanded a narrow width for whatever device was installed, the counterweight was allowed but 12 inches over all.

As readily seen, this differs from the well-known type of office-building elevator counterweight chiefly in its use of safety dogs to grip the guides in case of accident. The weight of the frame alone is about 1,000 pounds, while the cast-iron weights carried by it weigh about 300 pounds each, bringing the total to about 6,000 pounds.

The skip has a capacity of about 6,000 pounds, and empty weighs 3,000 pounds, so that its total weight loaded is 9,000 pounds. Sheave wheels are placed over both shaft compartments and the two 1-inch cables, weighing 1.58 pounds per foot, are wound, one on each drum of the steam hoist.

It is thus seen that in hoisting with the counterweight, the peak load on the hoist instead of being 9,000 pounds plus the 2,300 pounds of rope, totaling 11,300 pounds as it was at first, is now but 5,300 pounds at the start of hoisting the skip. In lowering the emptied skip, its 3,000 pounds weight opposes the 8,300 pounds combined weight of the counterweight and rope, so that the peak load of 5,300 pounds on the engine is the same as before.

This device, aside from giving satisfactory service without repairs, has proved a great coal saver for the Findley company. It was built and installed by the Pioneer Foundry and Machine Works Co., of Victor, Colo., Edward F. McCool, Manager.